MANUAL BÁSICO HEC-RAS 5.0.3
Ruptura de Barragem
Sumário

1 INTRODUÇÃO ... 3
2 HEC-RAS .. 4
 2.1 Interfaces do software – Principais Ferramentas ... 5
3 HEC-GeoRAS .. 7
 3.1 Interface da extensão ... 7
4 INSTALAÇÃO DO HEC RAS ... 8
5 INSTALAÇÃO DO HEC-GeoRAS .. 8
6 AVISOS IMPORTANTES .. 9
7 CONFIGURANDO O SISTEMA .. 10
8 ATIVANDO o HEC-GeoRAS .. 11
9 DADOS GEOMÉTRICOS NECESSÁRIOS ... 11
10 ETAPAS DE TRABALHO .. 12
11 ETAPAS ... 12
 11.1 Processo de trabalho com o ArcMap .. 12
 11.1.1 Vetorização dos elementos notáveis .. 25
 11.1.2 Topologias ... 46
 11.2 Trabalho com o Hec Ras .. 55
 11.3 Definição dos Coeficientes de Maninng ... 61
 11.4 Edição das seções transversais .. 67
 11.5 Interpolação das seções transversais .. 71
 11.6 Edição da Estrutura da barragem ... 73
 11.7 Definição da Geometria da Brecha .. 77
Para definirmos a geometria da brecha acessamos a opção Breach Plan Data, conforme abaixo, na área de edição da estrutura em linha. ... 77
 11.8 Ruptura barragem de Concreto ... 81
 11.9 Conexão do reservatório ... 83
 11.10 Filtro de pontos .. 86
 11.11 Condições de Escoamento .. 89
 11.12 Simulação .. 94
 11.13 Visualização e Exportação dos Resultados ... 101
 11.14 RAS MAPPER .. 119
 11.15 Visualização e exportação dos resultados ... 126
 11.16 EXPORTANDO A MANCHA PELO RAS MAPPER ... 130
12 INSTABILIDADES NO MODELO ... 135
13 REFERÊNCIAS ... 137
1 INTRODUÇÃO

O presente manual básico foi desenvolvido para descrever o uso do software HEC RAS 5.0.3 com auxílio da extensão HEC-GeoRAS para ArcGis, para simulação de ruptura de barragem em regime de escoamento não permanente 1-D.

O estudo de rompimento de barragem é um problema típico de regime variável com superfície livre. Pode ser desenvolvido baseado em modelagem matemática, física ou numérica. As soluções analíticas, desenvolvidas na modelagem matemática, tem utilização reduzida, mas são úteis para o desenvolvimento de análises preliminares ou aproximadas dos casos de estudo. A aplicação de modelos físicos para um estudo deste tipo é difícil, ou o modelo tem que ter dimensões gigantescas e por isso impraticáveis, ou escolhendo uma escala reduzida, a reprodução da cheia induzida sofre efeitos de escala. Os modelos físicos quando utilizados em conjunto com os modelos numéricos podem trazer grandes benefícios.

Hoje em dia devido às menores limitações em relação a capacidade computacional, os modelos numéricos surgem como uma via preferencial de análise de casos complexos, representado melhor as condições reais que estão sendo analisadas.

O software utilizado para a propagação da cheia foi o HEC-RAS 5.0.3 (Hydrologic Engineers Corps – River Analysis System). O modelo se baseia na resolução das equações de Saint-Venant uni ou bidimensionais, na versão 5.0.3, considerando regimes permanentes ou não permanentes.

Na construção do modelo de simulação hidrodinâmica no HEC-RAS 5.0.3 são necessárias as seguintes informações:

- Geometria: Caracterização topobatimétrica da região de estudo por meio de levantamentos de campo;
- Coeficientes de Rugosidade: Para o desenvolvimento do modelo são utilizados coeficientes de perda de energia, como o coeficiente de Manning para avaliação das perdas por atrito, e coeficientes de contração e expansão;
- Condições de contorno: são condições introduzidas nos extremos dos trechos estudados, a montante e jusante do modelo, para que o modelo dê início aos cálculos da superfície da linha d’água. É possível a utilização alguns tipos
diferentes de condições de contorno no HEC-RAS, elevação da superfície da água, profundidade crítica, profundidade normal (onde em geral é utilizada a declividade média do talvegue), curva chave e hidrogramas.

- Condições de Cálculo: além das informações geométricas, de escoamento, condições de contorno e coeficiente de perda de energia é necessário que sejam informados os tempos de cálculo e de obtenção de resultados.

2 HEC-RAS

HEC-RAS uma sigla, que traduzida significa Sistema de Análises de Rios do Corpo de Engenharia do Exército Norte Americano.

A partir deste software podemos realizar análises envolvendo Escoamento Permanente, Não Permanente, Análise da qualidade da água e Movimento de Sedimentos, o que permite ao usuário obter informações bastante precisas em cada tipo de simulação.

Podemos citar como principais vantagens o fato do software ser gratuito e trabalhar com pequenas simplificações na equação de Saint Venant. Devido a essa precisão, utilizar o HEC-RAS agrega valor a um estudo de escoamento, pois é visto pelos profissionais da área como referência neste quesito. Ele permite integração com poderosos softwares de análise GIS, como o ArcGIS e o AutoCAD Civil 3D, e assim facilita a criação de mapas de inundação.

O HEC-RAS ainda proporciona um alto grau de precisão e confiabilidade, que permite considerar os dados apresentados como significativos durante a tomada de decisões relacionadas aos impactos causados por uma determinada inundação.
2.1 Interfaces do software – Principais Ferramentas

Figura 1 Interface da janela principal.
Figura 2 Interface da janela de edição da geometria.
3 HEC-GeoRAS

O HEC-GeoRAS é uma extensão para uso com o ArcGIS, foi desenvolvido especificamente como uma ferramenta de auxílio no processo de criação, edição e exportação da geometria para o HEC-RAS.

3.1 Interface da extensão

Figura 3 Interface da extensão HEC-GeoRAS.

Ferramenta utilizada para identificar os rios principais e secundários.

Ferramenta utilizada para identificar os valores de início e fim das estações para os rios tributários.

Ferramenta utilizada para identificar as linhas das Flow Paths como esquerda, direita e canal.

Ferramenta utilizada para a geração de seções transversais com intervalos e larguras especificados.

Ferramenta utilizada para plotar uma determinada seção transversal.

Ferramenta utilizada para identificar as levees.
Ferramenta utilizada para a conversão do dado de saída de SDF para XML.

4 INSTALAÇÃO DO HEC RAS

O software é gratuito e pode facilmente ser baixado junto do manual e exemplos de aplicação a partir da página:

Figura 4 Página de download do HEC-RAS.

O arquivo baixado se trata de um executável.

5 INSTALAÇÃO DO HEC-GeoRAS

Para a instalação da extensão HEC-GeoRAS é necessário ter instalado o software ArcGis e ter ativada a extensão 3D Analyst y Spatian Analyst que serão utilizadas nas operações de processamento dos dados. A extensão HEC-GeoRAS assim como o HEC-RAS é gratuita e pode facilmente ser baixada a partir da página:

Figura 5 Página de download da extensão HEC-GeoRAS.

O arquivo baixado se trata de um executável .msi.

6 AVISOS IMPORTANTES

- Quando estiver trabalhando com HEC-RAS utilize nomes simplificados para os arquivos gerados, procure não utilizar nomes extensos;

- Salve os arquivos gerados em diretórios de fácil acesso ao software, crie uma pasta no diretório c: e trabalhe apenas com uma pasta, procure não criar excesso de pastas dentro de pastas para facilitar o acesso dos arquivos;

- Não utilize acentos nos nomes de arquivos gerados e nas pastas criadas.

São avisos extremamente simples, mas que podem impedir que ocorram alguns problemas durante a simulação e exportação dos resultados.
7 CONFIGURANDO O SISTEMA

O HE-RAS é um software americano, sendo utilizado ponto no lugar de vírgula e todos os parâmetros numéricos de entrada. Para não termos problemas em relação a configuração de ponto e vírgula vamos alterar a região do sistema de nosso computador, para isso basta acessar o painel de controle, e região, posteriormente configuramos o formato como inglês Estados Unidos.

Figura 6 Painel de controle.

Figura 7 Janela Região.
8 ATIVANDO o HEC-GeoRAS

Após a instalação da extensão é necessário ativá-la. A ativação da barra de ferramentas HEC-GeoRAS é feita clicando com o botão direito do mouse sobre o espaço ocupado pelos menus no ArcMap, e marcando a caixa correspondente ao HE-GeoRAS.

Figura 8 Ativando a extensão HEC-GeoRAS.

Assim aparecerá a barra de ferramentas com as funcionalidades necessárias à exportação e importação dos dados.

9 DADOS GEOMÉTRICOS NECESSÁRIOS

Para a exportação dos dados geométricos necessários à modelagem será utilizado um MDT (modelo digital de terreno) em formato vetorial TIN (Triangulated Irregular Network). O modelo pode ser gerado com a extensão 3D Analyst a partir de um arquivo de pontos cotados ou curvas de nível. A partir da TIN são extraídos os dados geométricos das seções transversais.
Figura 9 Curvas de nível utilizadas como referência para a definição da geometria.

10 ETAPAS DE TRABALHO

São basicamente 3 etapas:

1. Processo de trabalho com o ArcGis e HEC-GeoRAS para a geração do arquivo que será importado no HEC RAS onde estarão contidas as informações geométricas das seções transversais;

2. Modelagem hidráulica com o HEC-RAS e geração do arquivo de exportação para o ArcGis;

3. Processo de trabalho dos resultados novamente com o ArcGis e HEC-Georas, onde serão gerados os resultados finais.

11 ETAPAS

11.1 Processo de trabalho com o ArcMap

- Abrir o ArcMap.
- Definir o sistema de coordenadas
Definindo o sistema de coordenadas

Clicar com o botão direito sobre o DataFrame “Layer”, conforme abaixo e em seguida “Properties”

Figura 10 Definindo o sistema de coordenadas.

Clicar com o botão direito em “Layer” e posteriormente em “Properties.”

Figura 11 Definindo o sistema de coordenadas.
Em seguida na janela “Data Frame Properties” escolher dentre os sistemas disponíveis a opção *Projected Coordinate Systems/UTM/WGS84/WGS84 UTM Zone 18 N*, conforme abaixo:

1. Clicar na aba *Coordinate System*.
2. Clicar em *Projected Coordinate System*.
3. Abrir a opção *UTM*.
4. Abrir a opção *WGS 1984*.

Inserindo as Curvas de Nível

Para o exemplo em questão utilizaremos como referência para a geração do MDT – Modelo Digital de Terreno curvas de nível da área de estudo. Para adicioná-las ao ArcMap basta clicar em Add Data e buscar o arquivo no diretório onde foi salvo.

Figura 12 Definindo o sistema de coordenadas.
Caso o diretório onde as curvas foram armazenadas não apareça basta clicar em Connect to folder e “conectar” a pasta que deseja. Após esse procedimento é necessário buscar o arquivo para adicioná-lo.
Figura 14 Conectando uma pasta.

Após conectar a pasta basta buscar o arquivo desejado e adicioná-lo.

Figura 15 Curvas de nível inseridas no ArcMap.

Criando a Superfície Triangular - TIN

Após a inserção das curvas de nível geramos a superfície triangular, que será o modelo de referência para extração das informações geométricas.

O primeiro passo é abrir o ArcToolBox clicando no ícone abaixo, em seguida aparecerá uma janela com ferramentas do software. A partir da barra de ferramentas 3D Analyst na opção Data Management/TIN/Create TIN geramos a TIN.
Figura 16 Abrindo o Arctool Box.

Figura 17 Buscando a ferramenta de criação da superfície triangular – Create Tin.

Clicando em TIN será aberta a janela Create Tin, onde devemos inserir as curvas de nível, e informar novamente o sistema de referência, WGS 84 UTM 18 N.
Figura 18 Inserindo as curvas de nível e definindo o sistema de coordenadas na janela de criação da TIN.

Após inserirmos as curvas devemos informar o diretório de saída.

Figura 19 Definindo o diretório de saída do arquivo gerado.

Após inserirmos as curvas devemos informar no campo Height Field a opção onde se encontram as informações de elevação do nosso arquivo.
Figura 20 Informando o campo onde se encontram os dados de elevação da referência geométrica.

Em seguida clicamos em OK e aguardamos o processamento.

Como a geração da TIN pode demandar grande capacidade de processamento do computador o ideal desabilitarmos a função Background Processing, conforme abaixo, antes de gerar a TIN.

Figura 21 Criando a TIN e aguardando o processamento.
Devemos deixar a opção Enable desabilitada.

Na janela Geoprocessing Option desabilitar a opção Enable, e clicar em OK.

Com a finalização do processamento será gerada a superfície, conforme a seguir.
Figura 24 Superfície triangular gerada.

Para melhorarmos o aspecto da superfície em relação a abrangência da interpolação, utilizamos a opção Edit Tin, na mesma aba que utilizamos para a criação.

Acessar o ArcTool Box / 3D Analyst Tools / TIN / Edit TIN

Figura 25 Editando a TIN com a ferramenta EDIT TIN.
Em seguida podemos definir a distância máxima de triangulação inserindo uma medida, por exemplo 100 m.

Inserir a superfície criada anteriormente, em Input TIN, e clicar em OK.

Figura 26 Definindo a distância máxima de interpolação.

Em seguida clicamos em OK, e aguardamos o novo processamento. A seguir o resultado final.

Figura 27 Resultado final da TIN.
Adicionar a camada de imagem:

Para facilitar os processos de vetorização podemos utilizar uma imagem como referência. O ArcGis nos possibilita o carregamento de imagens online.

Basta clicar em Add Data e Add Basemap.

![Figura 28 Inserindo imagem disponível no ArcGis.](image)

Será aberta uma nova janela com as opções disponíveis. Seleccionamos Imagery, então será criado um novo layer com a imagem carregada.

![Figura 29 Definindo o mapa base.](image)
11.1.1 Vetorização dos elementos notáveis

Após a geração do Modelo Digital de Referência, a superfície triangular que criamos anteriormente, e a inserção da imagem de satélite partimos para a etapa de vetorização dos elementos notáveis. São os elementos que serão exportados do ArcMap e importados no software HEC-Ras. Os elementos são basicamente o rio, as margens do rio, as seções transversais topobatimétricas, pontes, reservatório e estrutura em linha que para o exemplo em questão será uma barragem.

O processo será bem semelhante para todos os elementos, sendo utilizadas linhas e polígonos para a definição dos mesmos.

Inicialmente criamos uma camada para cada um dos itens a serem vetorizados e posteriormente partimos para a etapa de vetorização propriamente dita.

A ferramenta para a geração das camadas se encontra na extensão HECGeoRas, no Menu RasGeometry e são apresentadas na ordem em que devem ser utilizadas.

Figura 30 Ferramentas do menu RAS Geometry, do HEC-GeoRAS.
CREATE RAS LAYER: cria as camadas shape da geometria;

LAYER SETUP: Especifica os temas para os ficheiros de importação

STREAM CENTERLINE ATTRIBUTES: Identifica a topologia e atributos do rio;

XS CUT LINE ATTRIBUTES: identifica a topologia e atributos das seções transversais;

EXPORT RAS DATA: Cria o arquivo de importação para o HEC-RAS.

A seguir o passo a passo para vetorização de cada um dos elementos.

Representação da calha do rio (river.shp):

RasGeometry/Create Ras Layer/ Stream Centerline: introduzimos o nome que desejamos. Assim se cria um arquivo vetorial de linhas e um banco de dados (.mdb) em que iremos vetorizar o rio.

Figura 31 Criando a camada do rio – Stream Centerline.
A vetorização deve ser desenvolvida de montante para jusante utilizando as ferramentas de edição do ArcGis. A partir do layer criado com o HEC-GeoRAS criamos uma polyline no eixo do rio efetuando-se cliques sucessivos.

Após a criação da camada River a mesma aparecerá no Data Frame Layers. Para iniciarmos a vetorização temos que primeiramente iniciar o processo de edição clicando com o botão direito do mouse na cama River, em seguida em Editing Features e Start Editing, conforme a seguir:
Figura 34 Iniciando a edição da camada do rio.

Após iniciar a edição clicamos em Editor no menu superior do ArcMap, Editing Window, Create Features para abrir a janela de criação de Feições:
Figura 35 Abrindo a janela Create Features.

Aparecerá uma janela no canto direito com a camada editável, clicamos sobre ela, no caso a camada River.

Figura 36 Seleccionando a camada River na janela Create Features.

Em seguida identificamos abaixo, em Construction Tools o tipo de feição que será utilizada, no caso utilizaremos a linha.
O próximo passo é efetuar clique sucessivos ao longo do eixo do rio para a criação de uma linha que representará o rio. Para finalizar a vetORIZAÇÃO podemos dar dois cliques ou então clicar com o botão direito e Finish Sketch.

![Figura 37 Selecionando a opção line.](image)

Figura 38 Criando a linha que representará o rio.

O próximo passo consiste em identificar um nome para o rio com uso da ferramenta do HECGeoRas.

É necessário nomear cada seguimento de rio

![Figura 39 Ferramenta de identificação da camada do rio.](image)

Identificar a camada do rio em Assign RiverCode/ReachCode

Este ícone será utilizado para identificarmos o rio.

![Clicar no ícone ID, para nomear o rio.](image)

Após clicar no ícone ID, clicando uma vez sobre a linha que o representa (linha criada anteriormente)
Figura 40 Identificando a camada do rio na janela Assign RiverCode/ReachCode.

Representação das margens do rio:

O processo de vetorização dos demais elementos é semelhante ao processo descrito anteriormente para a vetorização do rio, temos apenas que criar uma camada para cada elemento na opção Create Ras Layer e seguir os mesmos passos.

RAS Geometry/ Create RAS Layer / Bank Lines: geramos a camada vazia e prosseguimos com a vetorização das margens da mesma forma que fizemos anteriormente com o rio.

Figura 41 Criando a camada que representará as margens do rio (Bank lines).

Figura 42 Nomeando a camada das margens.
Damos início ao processo de vetorização clicando com o botão esquerdo sobre a camada que desejamos editar / Edit Features/ Start Editing, mesmo passo de edição do Rio.

Representação das seções transversais:

RAS Geometry/ Create RAS Layer / XS Cutlines: novamente geramos um arquivo vazio desta vez para as seções transversais.

Figura 43 Criando as linhas que representarão as margens do rio.

Figura 44 Criando a camada das seções transversais.
Regras:

1 – As seções não podem cruzar;

2 – As seções são traçadas perpendicularmente ao fluxo, da margem esquerda para a margem direita e devem tocar **apenas uma vez** tanto as bank lines como as flowpaths.

A geração das seções transversais pode ser feita de maneira automática utilizando-se a ferramenta esta ferramenta.

Figura 45 Nomeando a camada das seções transversais.

Figura 46 Definindo a equidistâncias e intervalo entre as seções.

Figura 47 Definindo a equidistâncias e intervalo entre as seções.
Figura 48 Definindo a equidistâncias e intervalo entre as seções

A partir de tal ferramenta são definidos os valores de largura das seções (Width) e intervalo entre seções (Interval).

Figura 49 Seções transversais geradas.

Para o exemplo utilizaremos um intervalo de 100 m e largura de 2200 m.
Após a geração das seções podem ser necessários ajustes quanto ao posicionamento das mesmas, pois como já mencionado elas não podem cruzar entre si, e devem cortar apenas uma vez as Bank lines, da margem esquerda e direita.

Para editarmos as seções basta clicarmos com o botão direito do mouse na camada XSCutLines, Edit Features e Start Editing.

Assim podemos traçar novas seções, ou então modificar o posicionamento das seções que foram geradas de forma automática.
Figura 51 Alterando o posicionamento da seção.

Representação das Flowpaths, área por onde está previsto o fluxo de água:

RAS Geometry/ Create RAS Layer / Flow Path Centerlines: a partir da intersecção das flowpaths com as seções transversais são definidas as distâncias entre as seções, nas margens esquerda e direita e canal do rio.

Figura 52 Criando camada das flowpaths.

Regras:
1 – Devem ser desenvolvidas de montante para jusante, uma linha para cada lado do rio, incluindo o canal principal, mas como este já está feito, é recomendável aceitar a opção do programa de copiá-la automaticamente.

![Figura 53 Aviso do software, questionando se deseja utilizar o eixo criado para o rio como a flowpath do canal.](image)

![Figura 54 Identificação do Rio e Flowpaths.](image)

Agora devemos selecionar o rio como Stream Centerline e inserir o nome da flowpath.

Posteriormente seguimos os mesmos passos já descritos anteriormente para darmos início a edição da camada, e criamos duas polilinhas, uma na extremidade direita das seções e outra na esquerda, cruzando todas as seções transcursais.
Criamos as polilinhas nas extremidades das seções, com cliques sucessivos.

Figura 55 Criação das Flowpath esquerda e direita.

2 – É necessário definir, para cada segmento a condição: left, right e channel.

Este ícone define a posição da flow path, selecionando a posição correspondente de cada segmento, left, right e channel.

Clicamos no ícone acima e posteriormente clicamos sobre cada uma das três linhas que representam as Flow paths, sendo uma em cada margem e uma sobre o eixo do rio.

Figura 56 Ícone de seleção da Flowpath.

Após clicarmos no ícone o cursor do mouse ficará com esse aspecto.
Após clicamos sobre a linha abrirá uma janela solicitando a indicação de posicionamento da linha, entre margem esquerda, margem direita ou canal.

Após clicarmos sobre a flowpath será aberta a janela Assign Flowpath Type.
Figura 59 Identificando a flowpath.

Seguimos o mesmo procedimento para as três linhas, esquerda (left), direita (right) e calha principal (channel).

Figura 60 Identificando a flowpath.

Identificamos a posição, entre Left (esquerda), Channel (calha principal) e Right (direita).

Figura 61 Identificando a flowpath do canal.
Representação do eixo da barragem:

O próximo passo é vetorizarmos o eixo da barragem, na cama Inline Structure, o passo é semelhante aos descritos anteriormente.

RAS Geometry/ Create RAS Layer / Inline Structure: novamente geramos um arquivo vazio desta vez para a estrutura em linha.

![Imagem](image-url)

Figura 63 Criando camada que representará a barragem.

Figura 62 Identificando a flowpath direita.
O próximo passo é dar início ao processo de edição da camada da mesma maneira que fizemos com o rio, margens, seções e flowpaths.

Figura 64 Nomeando a camada.

Figura 65 Iniciando a edição da camada.
Figura 66 Votorizando o eixo da barragem.

Representação o reservatório:

Para a vetorização do reservatório utilizaremos um polígono, diferentemente dos itens anteriores, onde foram utilizadas linhas, mas o processo é bem semelhante.

RAS Geometry/ Create RAS Layer / Storage Area: novamente geramos um arquivo vazio desta vez para a o reservatório.

![Clicar em RAS Geometry/ Create RAS Layers/ Storage Areas](image1)

Figura 67 Criando camada que representará o reservatório.

Nomear a camada, o GeoRAS sugere StorageAreas

![Create Storage Areas](image2)
Para darmos início a edição da camada seguimos os mesmos passos descritos na edição das camadas anteriores. Para o reservatório será criada uma camada de polígono, diferentemente das camadas anteriores, que consistiam de linhas.

![Criar um polígono sobre o reservatório, com cliques sucessivos.](image)

Figura 69 Votorizando o reservatório.
Caso a hachura do reservatório esteja dificultando a visualização, basta retirá-la, clicando sobre o polígono localizada abaixo da camada StorageAreas, e, seguida Fill Color, e clicamos em No Color.

Duplo clique, para finalizar a edição.

Em Fill Color, selecionar a opção No Color

Clicar no polígono abaixo do nome da camada.
Figura 71 Retirando a Hachura do polígono.

A próxima etapa é identificar para todos os elementos as topologias correspondentes.

11.1.2 Topologias

Figura 72 Identificando a topologia do rio.

Inserir a topologia e a referência de elevação: Ras Geometry / Stream Centerline Attributes

Identificar a camada do rio e a TIN.
Figura 73 Definindo a topologia do rio.

É necessário seguir a ordem de execução indicada (Topology, Lengths/Station, Elevations ou diretamente All) e obter a mensagem “Successfully”.

Da mesma maneira se insere a topologia e referência de elevação para as seções transversais, reservatório e estrutura em linha.
Figura 74 Definindo a topologia das seções.

As operações são realizadas consecutivamente ou diretamente em All.
Figura 75 Verificações Inline Structures.

Figura 76 Verificações Storage Areas.
Verificar as camadas antes de exportar para o HecRas: Ras Geometry / Layer Setup

Nos permite visualizar os arquivos e verificar as camadas correspondentes.

Figura 77 Acessando o Layer Setup.

Figura 78 Verificando a geometria de referência.

- Acessar RAS Geometry e clicar em Layer Setup.
- Identificar a geometria de referência (TIN ou GRID) e selecioná-la no menu supenso.
Figura 79 Verificando as camadas do rio e seções transversais.

Figura 80 Janela de verificação das camadas.
Criação do arquivo de importação para o HEC-RAS: Ras Geometry / Export RAS Data

O próximo passo é exportamos os dados geométricos clicando na opção Export RAS Data, conforme abaixo:

![Imagem de exportação de dados geométricos em HEC-RAS]

Figura 81 Exportando os resultados.
Devemos escolher o diretório onde o arquivo exportado será salvo, e em seguida clicamos em OK.

Após o processo de exportação será gerado um arquivo .sdf no diretório selecionado e aparecerá na tela a mensagem “GIS Data for RAS exported successfully”.

Figura 82 Janela de exportação.
Se o software não identificar nenhum problema durante a exportação será mostrada a janela abaixo:

Aguardar o processo de exportação da geometria.

Processo de exportação finalizado, clicar em OK.

Figura 83 Janela de exportação, processamento em andamento.

Figura 84 Dados exportados com sucesso.
Após o processo de exportação será gerado um arquivo .sdf no diretório selecionado e aparecerá na tela a mensagem “GIS Data for RAS exported successfully”.

11.2 Trabalho com o Hec Ras

- Criar um novo projeto

- Editar a geometria (Edit/Geometric Data)

Importar o arquivo de geometria: File / Import Geometry Data / Gis format buscando o arquivo .sdf gerado pelo ArcGis.

Nas opções de importação selecionar o sistema de unidades SI (metric) units.

Figura 85 Criando um novo projeto.
Após criarmos o novo projeto acessamos a área de edição geométrica para importamos os dados geométricos criados no ArcMap.

Figura 86 Criando um novo projeto no HEC-RAS.

Figura 87 Acessando a área de edição geométrica.
Importaremos no HEC-RAS o arquivo .sdf que exportarmos com uso do ArcMap.

Figura 89 Inserindo os dados gerados com o HEC-GeoRAS.
Figura 90 Importando a geometria no HEC-RAS.

Após selecionarmos o arquivo geométrico será apresentada a janela de importação de dados, onde devemos inicialmente indicar o sistema de unidades que será utilizado, no nosso caso o SI.

Buscar o arquivo exportado do ArcMap, com formato .sdf.

Figura 91 Definindo o sistema de unidades.
Figura 92 Trechos de rio a serem importados.

Após a verificação dos dados nas abas River Reach Stream Lines e Cross Sections and IB Nodes e finalizamos a importação **Finished – Import Data.**

Figura 93 Seções transversais a serem importadas.
Após finalizarmos a importação os dados geométricos importados serão apresentados na janela de edição geométrica.

Figura 94 Janela de edição geométrica com os dados importados.

Após a importação dos dados geométricos salvamos o arquivo em File Save Geometry Data As ...

Figura 95 Salvando a geometria.
Escolhemos o diretório onde vamos salvar o arquivo e clicamos em OK. Lembrando de utilizar nomes curtos.

Figura 96 Salvando a geometria.

Após a importação dos dados geométricos podemos inserir os valores dos coeficientes de manning em **Tables / Manning’s or Kvalues**

11.3 Definição dos Coeficientes de Maninng

Para inserirmos os coeficientes de rugosidade acessamos o menu Tables e Manning’s or K values, na área de edição da geometria, conforme abaixo:
Inserindo os coeficientes de manning.

Será aberta a janela Edit Manning’s or k Values, onde podemos inserir os coeficientes desejados. Podemos inserir individualmente clicando em cada célula ou então selecionando a coluna desejada com um clique em uma das três opções abaixo:

1. Coluna n#1 – margem esquerda;
2. Coluna n#2 – calha principal do rio;
3. Coluna n#3 – margem direita.

Figura 97 Insersão os coeficientes de manning.

Figura 98 Tabela de inserção dos coeficientes de Manning.
Após a coluna ser selecionada clicamos na opção Set Values..., e digitamos o coeficiente desejado na janela, conforme a seguir, dessa maneira todas as células da coluna selecionada serão preenchidas com o coeficiente de manning inserido.

Figura 99 Inserindo os coeficientes para toda a coluna.

Após clicarmos em OK, a coluna selecionada será preenchida com o valor digitado.

Figura 100 Inserindo os coeficientes para toda a coluna.
Os coeficientes de manning podem ser definidos a partir de calibração do modelo, com uso de níveis d’água ao longo do trecho de estudo coletas em campo, e vazões defluentes correspondentes a esses níveis, nesse processo utilizamos inicialmente coeficientes de manning da literatura e variamos os mesmos até que os níveis d’água observados em campo sejam atingidos. Para o exemplo em questão utilizaremos coeficientes da literatura como referência.

<table>
<thead>
<tr>
<th>Tipo de Canal</th>
<th>Tamanho médio das partículas do leito (mm)</th>
<th></th>
<th></th>
<th>Benson e Dalrymple (1967)</th>
<th>Apui Jarret (1965)</th>
<th>Chow (1959)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leito móvel</td>
<td>0,2 até 0,4</td>
<td>0,012 até 0,020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,4 até 0,6</td>
<td>0,020 até 0,023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,6 até 1,0</td>
<td>0,023 até 0,026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Leito estável</td>
<td>Terra firme</td>
<td>0,025 até 0,032</td>
<td>0,020</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Areia Grossa</td>
<td>0,025 até 0,032</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cascaho</td>
<td>0,025 até 0,032</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pedra arredondada (séio)</td>
<td>0,030 até 0,050</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,040 até 0,070</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Figura 101 Coeficiente de rugosidade de Manning para canais naturais.

Fonte: adaptado de CHOW, 1959.

<table>
<thead>
<tr>
<th>Tipos de Planície de Inundação</th>
<th>n</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pastagem</td>
<td></td>
<td>Minimo</td>
<td>Medio</td>
<td>Maximo</td>
<td></td>
</tr>
<tr>
<td>Grama Baixa</td>
<td>0,025</td>
<td>0,030</td>
<td>0,035</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grama alta</td>
<td>0,030</td>
<td>0,035</td>
<td>0,050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Áreas cultividas</td>
<td></td>
<td>Minimo</td>
<td>Medio</td>
<td>Maximo</td>
<td></td>
</tr>
<tr>
<td>Nenhum cultivo</td>
<td>0,020</td>
<td>0,030</td>
<td>0,040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colheita desenvolvida</td>
<td>0,030</td>
<td>0,040</td>
<td>0,050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mata</td>
<td></td>
<td>Minimo</td>
<td>Medio</td>
<td>Maximo</td>
<td></td>
</tr>
<tr>
<td>Espenso, com muitas plantas rasteiras</td>
<td>0,035</td>
<td>0,050</td>
<td>0,070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raio</td>
<td>0,040</td>
<td>0,060</td>
<td>0,080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediano a denso</td>
<td>0,070</td>
<td>0,100</td>
<td>0,160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Árvores</td>
<td></td>
<td>Minimo</td>
<td>Medio</td>
<td>Maximo</td>
<td></td>
</tr>
<tr>
<td>Grande porte (salgueiro, mangueira etc)</td>
<td>0,110</td>
<td>0,150</td>
<td>0,200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terreno limpo, com tocos e com algumas plantas rasteiras</td>
<td>0,030</td>
<td>0,040</td>
<td>0,050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terreno limpo, com tocos e com muitas plantas rasteiras</td>
<td>0,050</td>
<td>0,060</td>
<td>0,080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fita dura, com nível de inundação abaixo dos galhos</td>
<td>0,060</td>
<td>0,100</td>
<td>0,120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fita dura, com nível de inundação acima dos galhos</td>
<td>0,100</td>
<td>0,120</td>
<td>0,160</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 102 Coeficiente de rugosidade de Manning para planícies de inundação.

Fonte: adaptado de CHOW, 1959.
O HEC-RAS também fornece algumas referências de coeficientes de manning, lembrando que esses são para rios dos Estados Unidos, e muitas vezes as características de tais rios não se assemelham aos do Brasil.

Figura 103 Acessando a referência on-line de coeficientes de Manning no HEC-RAS.

Seremos direcionados a uma página do USGS, onde constam informações de coeficientes e fotografias do tipo de cobertura.

Figura 104 Referência on-line de coeficientes de Manning do USGS.
Figura 105 Referência on-line de coeficientes de Manning do USGS.

Figura 106 Coeficientes adotados.

Coeficientes adotados para o exemplo. Seleccionamos a coluna, digitamos o coeficiente e clicamos em OK.
11.4 Edição das seções transversais

Geralmente é necessário desenvolver algumas edições na geometria, corrigindo o posicionamento das bank station e inserindo leves.

Podemos corrigir as seções transversais em **Tools / Graphical Cross Section Edit...**, inserir leveess, áreas de escoamento não efetivo, entre outros.

Figura 107 Acessando a área de edição e visualização das seções transversais.

Figura 108 Acessando a área de edição gráfica das seções transversais.
Assim seremos levados a janela de edição das seções transversais conforme abaixo.

Figura 109: Janela de edição gráfica das seções.

Essa janela possui ferramentas que possibilitam edições na geometria da seção transversal.

Figura 110: Ferramentas de edição das bank stations.
Ferramentas para edição de posição das bank stations.

Clicando com o botão direito na área de edição geométrica podemos utilizar a função **Add Levees**.

Figura 111 Inserindo as levees.
O objetivo da inserção das Levees é a definição da calha principal do rio. A utilização dessa ferramenta será melhor compreendida após a simulação, mas essas estruturas devem ser inseridas em pontos de maior elevação que separam a calha principal das margens como abaixo:

Figura 112 Visualização da levee.

Figura 113 Visualização da levee.
Com a inserção da levee no ponto da seção anterior, o nível d’água só irá atingir a região 1 após ultrapassar o ponto onde foi inserida a levee. Caso não existisse a levee o HEC-RAS consideraria como se existisse um vaso comunicante entre as regiões 1 e 2.

11.5 Interpolação das seções transversais

É possível interpolar seções em **Tools /Xs Interpolation**, e assim adicionar seções intermediárias caso desejado, para aumentar o detalhamento geométrico do modelo.

Figura 114 Interpolando seções transversais.

A interpolação pode ser desenvolvida entre duas seções transversais específicas ou em todo o trecho de um determinado rio. Optando pela interpolação ao longo de um rio seremos levados a janela abaixo onde devemos identificar o rio e a equidistância entre as seções que serão interpoladas, na janela Maximum Distance Between XS’s.
Figura 115 Janela de interpolação de seções.

Após a interpolação as seções interpoladas terão uma tonalidade verde clara, e as originais verde escuro.

Figura 116 Diferenciação entre seções interpoladas e as seções originais.
11.6 Edição da Estrutura da barragem

Para editarmos a estrutura da barragem basta clicarmos em Inline Structure, na janela de edição da geometria.

Figura 117 Acessando a área de edição da Inline Structure.

O próximo passo é inserirmos a elevação da crista e geometria do vertedouro. Inicialmente vamos editar a estrutura da barragem em Weir/Embankment. Para inserirmos as informações geométricas da barragem basta clicarmos em Weir/Embakment, conforme abaixo. Em seguida definimos a elevação da crista da barragem, bem como largura, coeficiente de descarga e distância da seção a jusante.
Figura 118 Inserindo a geometria da barragem.

Figura 119 Inserindo a geometria da barragem.
Figura 120 Inserindo a geometria da barragem.

Em seguida acessamos inserimos a estrutura do vertedouro na opção Gate, conforme abaixo, onde definimos o tipo de vertedouro, altura, comprimento, elevação da crista e coeficiente de descarga.

Figura 121 Acessado a área de edição da geometria do vertedouro.
Figura 122 Inserindo a geometria do vertedouro.

Figura 123 Geometria final do vertedouro.
11.7 Definição da Geometria da Brecha

Para definirmos a geometria da brecha acessamos a opção Breach Plan Data, conforme abaixo, na área de edição da estrutura em linha.

Figura 124 Geometria final do vertedouro.

Figura 125 Acessando a área de edição da brecha.
Na aba Parameter Calculator devemos inserir algumas informações da barragem como, cota da crista, cota da base da brecha, nível d’água do reservatório durante a ruptura, volume do reservatório correspondente ao nível d’água durante a ruptura, o modo de falha (galgamento, piping), entre outros. Após a inserção desses parâmetros o HEC nos fornecerá alguns resultados diferentes de largura de brecha e tempo de ruptura, utilizando metodologias empíricas para a definição desses parâmetros. Devemos selecionar a metodologia que apresentou os resultados mais compatíveis de acordo com uma avaliação prévia, sendo possível realizar uma simulação para cada um dos cenários fornecidos e comparar os resultados finais. Para o exemplo em questão utilizaremos os resultados apresentados adotando-se o método de Froehlich (2008), ressaltando que cabe uma avaliação mais detalhada e criteriosa para a definição do método a ser escolhido.
Figura 127 Acessando a área de definição dos parâmetros de cálculo da brecha.

Após a inserção dos parâmetros escolhemos dentre os 5 resultados apresentados (MacDonald et al, Froehlich (1995), Froehlich (2008), Von Thun & Gillette e Xu & Zhang, o que desejamos adotar no modelo, clicando em Select.
Após a escolha da metodologia serão apresentados os parâmetros de ruptura que serão utilizados na simulação, bem como uma visualização da geometria final da brecha na estrutura da barragem (linha vermelha).

Figura 128 Acessando a área de definição dos parâmetros de cálculo da brecha.

Figura 129 Acessando a área de definição dos parâmetros de cálculo da brecha.
11.8 Ruptura barragem de Concreto

As equações disponíveis no HEC-RAS são utilizadas para a definição dos parâmetros de ruptura de barragem de terra. Para o caso de barragens de concreto podem ser utilizados como referência parâmetros da literatura para a definição da brecha.

Para barragens em gravidade a ruptura é predominantemente por tombamento ou deslizamento devido a deterioração do material e diminuição da resistência da fundação.

Em estruturas de concreto, o deslizamento ocorre na fundação e a geometria da brecha é aproximadamente retangular.

Figura 130 Ilustração da brecha com geometria retangular.
Fonte: Viseu, 2006

A seguir algumas referências de parâmetros de ruptura para pesquisas desenvolvidas em diferentes países, para diversos tipos de barragens, inclusive barragens de concreto.
<table>
<thead>
<tr>
<th>País ou pesquisador</th>
<th>Tipo de barragem</th>
<th>Tempo de ruptura</th>
<th>Forma da ruptura</th>
<th>Profundidade da brecha</th>
<th>Largura da brecha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espanha (Espanha, 2001)</td>
<td>Arco</td>
<td>Instantânea, entre 5 e 10 minutos</td>
<td>Completa, admitindo geometria trapezoidal</td>
<td>Até o contato com o leito no pé</td>
<td>O maior entre: • 1/3 do compr. da crista • 3 blocos</td>
</tr>
<tr>
<td>Gravidade e contrafortes</td>
<td>Instantânea, entre 10 e 15 minutos</td>
<td>Retangular</td>
<td>Até o contato com o leito no pé</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terra e/ou enrocamento</td>
<td>T(h)=4,8 \cdot V^{0,5} (\text{m}^3/\text{m}^2) \cdot (\text{m})^{0,25}</td>
<td>Trapezoidal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barragens mistas</td>
<td>Formular a ruptura de cada uma de suas partes, selecionando o modo e o tipo de ruptura que dé lugar à maior vazão de ponta no hidrograma de ruptura</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estados Unidos</th>
<th>Gravidade</th>
<th>0 a 6 minutos</th>
<th>Completa, igual à parede do vale</th>
<th>H (barr)</th>
<th>Largura total do vale</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE (1992)</td>
<td>Concreto</td>
<td>6 a 30 minutos</td>
<td>Retangular</td>
<td>H (barr)</td>
<td>Múltiplos inteiros de larguras monolíticas</td>
</tr>
<tr>
<td>Terra</td>
<td>0,5 a 4 horas (USACE)</td>
<td>0,1 a 2 horas (NWS)</td>
<td>Vertical a trapezoidal (1 : 1)</td>
<td>H (barr)</td>
<td>0,5 a 3 vezes a altura da barragem</td>
</tr>
<tr>
<td>Arco</td>
<td>Menor do que 0,1 horas</td>
<td>Declividade da lateral da brecha entre zero e a declividade do vale</td>
<td>Comprimento da crista</td>
<td>Múltiplos trechos</td>
<td></td>
</tr>
<tr>
<td>Contraforte</td>
<td>Entre 0,1h e 0,3h</td>
<td>Declividade da lateral da brecha normalmente igual a zero</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravidade</td>
<td>Entre 0,1h e 0,3h</td>
<td>Declividade da lateral da brecha normalmente igual a zero</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terra e enrocamento</td>
<td>Entre 0,1 e 1,0h (compactada) e entre 0,1h e 0,5h (não compactada)</td>
<td>Declividade da lateral da brecha entre 0,25 e 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 131 Parâmetros de ruptura.

Fonte: Viseu, 2006
11.9 Conexão do reservatório

Para simularmos o esvaziamento do reservatório pela brecha dimensionada anteriormente devemos conectá-lo ao rio. Para isso basta acessarmos no menu da janela de edição geométrica o item Edit / Move Poins/Objects.

Figura 132 Acessando a área de edição de pontos.

Após clicarmos na opção Move Points/Objects serão mostrados os pontos das estruturas que constam na área de edição geométrica, seções transversais, rio, estrutura em linha, reservatório etc. O processo de conexão do rio com o reservatório é bem simples, após clicar na opção Move Points/Objects basta clicar sobre o ponto do rio mais a montante e arrastá-lo para dentro do reservatório, quando soltarmos o ponto dentro do reservatório o HEC vai nos perguntar se gostaríamos de conectar o rio ao reservatório, clicamos em sim.
Figura 133 Acessando a área de edição de pontos.

Clicar sobre o ponto mais a montante do rio e arrastá-lo para dentro do reservatório.

Figura 134 Arrastando o ponto para o reservatório.
Figura 135 Arrastando o ponto para o reservatório.

Com o término da edição basta acessarmos novamente a opção Edit e clicarmos em Move Points / Objects, para finalizar a edição.
11.10 Filtro de pontos

Quando trabalhamos com simulações unidimensionais termos que atender à exigência do HEC quanto ao número máximo de pontos admitidos por seção transversal, que é 500, incluindo-se nesse número eventuais levees inseridas no modelo. Caso o modelo geométrico apresente seções com número de pontos superior a 500 devemos efetuar a filtração dos pontos.

Na janela de edição geométrica acessamos no menu principal a aba tools e em seguida Cross Section Points Filter, conforme a seguir.

Podemos identificar individualmente as seções em que a filtração será desenvolvida, ou selecionar todas as seções. Inicialmente identificamos em que região da seção a filtração será desenvolvida, podendo ser considerada em toda a seção, na calha principal ou as margens.
No menu suspenso da aba Near and Colinear Filter selecionamos a opção “Only the overbank points” para retirarmos pontos que se encontram apenas além das margens, evitando a perda de detalhamento da calha.

Figura 137 Seleccionando o filtro de pontos apenas além das margens.

Na aba Multiple Locations, selecionar a opção All Rivers, e clicar na seta indicada para selecionar todas as seções.

Figura 138 Seleccionando o filtro de pontos apenas além das margens.
Figura 139 Seleccionando o filtro de pontos apenas além das margens.

Em seguida o HEC nos informará as seções que possuíam número de pontos acima de 500, e os pontos que foram excluídos.

Figura 140 Pontos removidos.
11.11 Condições de Escoamento

Após as edições da geometria podemos definir as condições de escoamento.

- Editando os dados hidráulicos **Edit / Unsteady Flow Data:**

![Figura 141 Acessando a área de edição do escoamento não permanente.](image)

Na janela de edição dos dados de escoamento teremos de inserir uma condição de contorno a montante e jusante da área de estudo, na aba **Boundary Conditions**, que no caso será para montante a abertura de comporta do vertedouro, e para jusante a declividade do rio.

![Figura 142 Janela de edição do escoamento não permamente.](image)
A definição dos dados de escoamento é uma etapa bem mais simples do que a definição dos dados geométricos.

Em virtude disso, precisaremos definir as condições iniciais da simulação, e assim inserir informações referentes à vazão do rio, no momento do rompimento.

O HEC-RAS possui inúmeras opções de condições de contorno, as mais utilizadas são Hirograma e profundidade normal.

As condições que iremos considerar serão a declividade do rio ao longo do trecho estudado e abertura da comporta do vertedouro.

![Unsteady Flow Data - uFS](image)

Figura 143 Condições de contorno.

Ao clicarmos no campo em branco da linha referente a seção localizada a montante o HEC-RAS nos apresentará algumas condições de contorno que podem ser utilizadas, vamos utilizar a opção T.S. Gate Opening.
Na janela Gate Openings teremos que informar a abertura da comporta na coluna Gate Opening Height bem como o intervalo de abertura no menu suspenso Data Time Interval. Vamos adotar o valor de 1 hora como intervalo e um valor constante de 3 m de abertura, conforme a seguir:

Figura 144 Condições de contorno.

Figura 145 Condições de contorno.
Para definirmos a declividade do rio acessamos o perfil longitudinal no menu principal do HEC.

![Figura 146 Condições de contorno.](image1)

No perfil longitudinal utilizamos a ferramenta de medição do software segurando a tecla Ctrl, onde o cursor do mouse se tornara uma régua. Clicamos sobre o primeiro ponto do rio, mais a montante, e em seguida no ponto mais a jusante. O software mostrará a janela a seguir.

![Figura 147 Condições de contorno.](image2)

Informações de distância e declividade da região medida.
Acessamos novamente a área de edição dos escoamento não permanente, no meu principal do HEC-RAS, Edit / Unsteady Flow Data.

Figura 148 Declividade do rio.

Clicar no campo em branco na linha referente a seção localizada a jusante

Figura 149 Condições de contorno.
Ao clicarmos no campo em branco da linha referente a seção localizada a jusante o HEC-RAS nos apresentará algumas condições de contorno que podem ser utilizadas, vamos utilizar a opção Normal Depth, e inserimos o valor da declividade do rio medido anteriormente.

![Condições de contorno](image)

Figura 150 Condições de contorno.

Agora basta salvar o arquivo de escoamento, em File / Save Unsteady Flow Data.

11.12 Simulação

Após a inserção e edição dos dados geométricos e definição das condições de escoamento podemos prosseguir com a simulação **Run Unsteady Flow Analysis**.

![Simulação](image)

Figura 151 Realizando a simulação em regime de escoamento não permanente.
Na janela de simulação definimos as informações referentes a simulação de rompimento que será realizada.

Definimos o intervalo de tempo que será analisado, o intervalo de tempo de geração dos resultados e o tipo de escoamento.

Podemos também definir as seções onde serão gerados os hidrogramas de saída em options / Stage em flow output locations.

Figura 152 Janela análise de escoamento não permanente.
Figura 153 Salvando o plano.

Figura 154 Nomeando o arquivo.

Seleccionar o diretório onde será salvo o arquivo, e definir um nome para o arquivo.
Para o exemplo utilizaremos tempo de cálculo de 30 segundos, intervalo de saída do mapa de 5 minutos, intervalo de saída dos hidrogramas de 5 minutos. Conforme abaixo:

Figura 156 Janela de edição das condições da análise em regime de escoamento não permamente.
Por padrão o HEC nos fornece os hidrogramas de saída para as seções mais a montante e jusante. Para definir a saída de hidrogramas para as demais seções basta acessar no menu da janela Unsteady Flow Analysis/ Options/ Stage and Flow Output Locations...

Figura 157 Definindo os hidrogramas de saída.

Podemos selecionar individualmente as seções que gostaríamos de obter os hidrogramas de saída ou simplesmente selecionar a opção ALL RS para selecionar todas as seções.
Após a simulação caso não sejam identificados erros que podem ocorrer por diversos fatores o processo estará finalizado restando agora analisá-los e exportá-los.
Figura 160 Janela de simulação.

Com a finalização da simulação o HE-RAS apresenta os erros obtidos após as iterações, conforme abaixo, cabe ao modelador analisar os resultados obtidos e avaliar a consistência do modelo.

Figura 161 Janela de simulação.
11.13 Visualização e Exportação dos Resultados

Com a finalização da simulação podemos visualizar os resultados obtidos, são basicamente resultados gráficos e tabulares. A seguir as possibilidades de visualização de resultados bem como os procedimentos que devem ser adotados para exportá-los.

Perfil longitudinal

Para acessarmos o perfil longitudinal basta acessarmos na janela principal do software a opção View/ Water Surface Profiles..., ou então clicar no ícone View Profile.

Figura 162 Acessando a área de visualização do perfil longitudinal.

Figura 163 Acessando a área de visualização do perfil longitudinal.
Na opção Profiles podemos escolher o(s) perfil(s) que desejamos visualizar selecionando as caixas correspondentes ao tempo de interesse.

Figura 164 Definindo o perfil a ser visualizado.

Figura 165 Perfil longitudinal.
Além da visualização dos perfis o HEC também disponibiliza uma animação onde é possível visualizar a variação da lâmina d'água ao longo do tempo.

Figura 166 Exemplo de perfil com a opção Max WS, elevação máxima da superfície da água.

Figura 167 Exemplo de perfil com a opção Max WS, elevação máxima da superfície da água.
Figura 168 Animação para o perfil longitudinal.
Seção transversal

Para visualizarmos os resultados nas seções transversais basta acessarmos na janela principal do software a opção View/ Cross Sections, ou então clicar no ícone View Cross Sections.

Figura 169 Acessando a área de visualização das seções transversais.

Figura 170 Acessando a área de visualização das seções transversais.

Para escolhermos o perfil desejado clicamos em Options / Profiles...
Figura 171 Definindo o perfil.

Figura 172 Definindo o perfil.
Da mesma forma que o perfil longitudinal também é disponibilizada a animação, o processo é semelhante ao da animação do perfil apresentado anteriormente.

Figura 173 Animação.
Tabela de resultados

O HEC-RAS também fornece resultados em forma de tabela, para acessá-los basta clicar na opção View/ Profile Summary Table..., ou então clicar no ícone View summary output tables by profiles.

Figura 174 Acessando a área de visualização dos resultados tabulares.

Figura 175 Acessando a área de visualização dos resultados tabulares.

Podemos selecionar o perfil desejado clicando em Option/ Profile, selecionamos o perfil desejado e clicamos em ok.
Figura 176 Dados tabulares.

Figura 177 Definindo o perfil.
O HEC-RAS também permite que a tabela seja exportada para o excel, basta clicar em File/ Copy to Clipboard (Data and Headings) para copiar a tabela, e colar em um arquivo do excel.

Figura 178 Exportando os dados.

Após copiar a tabela, basta colar em um arquivo do excel.
Figura 179 Colando os dados no excel.

Visualização tridimensional

O HEC-RAS também fornece resultado tridimensional, para acessá-los basta clicar na opção View/ Profile Summary Table..., ou então clicar no ícone View summary output tables by profiles.

![Imagem do programa HEC-RAS](image_url)

Figura 180 Acessando área de visualização tridimensional.
Da mesma forma que o perfil longitudinal e as seções transversais, o HEC também disponibiliza a animação, o processo é semelhante às demais animações mostradas anteriormente.

Figura 181 Animação no modelo tridimensional.

Figura 182 Animação no modelo tridimensional.
Hidrogramas e Cotagramas

O HEC-RAS também fornece como resultado hidrogramas e cotagramas em cada uma das seções transversais inseridas no modelo, bem como as interpoladas. Para acessá-los basta seguir os passos abaixo:

![Image](HEC-RAS Interface)

Figura 183 Acessando os hidrogramas e cotagramas.

![Image](Example Hydrograph)

Figura 184 Acessando os hidrogramas e cotagramas.
A visualização dos hidrogramas nos permite não apenas identificar a variação da vazão e cota na seção, mas também uma avaliação da estabilidade do modelo. Modelos que apresentam instabilidades geralmente resultam em gráficos distorcidos como abaixo:

Figura 185 Hidrograma de um modelo instável.
Visualizando e exportando a mancha de inundação

Podemos exportar a mancha de inundação com uso da extensão HEC-GeoRAS.

Para a exportação dos resultados obtidos inicialmente acessamos no menu principal do HEC-RAS **File / Export GIS Data**

![Figura 186 Exportando os resultados.](image)

Definimos a exportação selecionando a caixa Water Surfaces, assim será gerado um arquivo .sdf com os resultados obtidos.

![Definir o diretório de saída, e clicar em ok](image)

Figura 187 Janela de exportação dos resultados.
Após exportamos o resultado do HEC, vamos voltar a trabalhar com o ArcMap para gerarmos a mancha de inundação. Inicialmente precisamos converter o arquivo .sdf exportado anteriormente para o formato .xml, para isso basta acessar na extensão HEC-GeoRAS a opção Import RAS SDF File, no ícone abaixo:

![Figura 188 Janela de exportação dos resultados.](image)

Após a conversão do arquivo, acessamos **RAS Mapping / Layer Setup** criamos uma análise e definimos os diretórios, inserimos a TIN e resolução das células.

![Figura 189 Acessando a área de importação dos resultados.](image)
Figura 190 Definindo os diretórios e TIN de referência.

Ao clicar em Ok será gerado um novo Data Frame onde serão inseridos os resultados.

Após a criação do novo Data Frame é necessário efetuar a leitura do arquivo.

Figura 191 Leitura do arquivo de importação.
Após a leitura são geradas uma série de camadas no novo Data Frame. Entre elas a TIN, e alguns arquivos vetoriais, como Bank Points, XS Cut Lines, Bounding Polygon.

Em RAS Mapping / Inundation Mapping / Water Surface Generation a TIN será recortada pela Bounding Polygon. Na janela de diálogo que aparece devemos selecionar o perfil que desejamos e clicar em OK.

Figura 192 Definindo o perfil simulado.

Figura 193 Definindo o perfil simulado.

Em RAS Mapping / Inundation Mapping / Floodplain Delineation o processo de criação da inundação para cada perfil.

É gerado também um grid com a profundidade da lâmina d’água em cada ponto que podemos simbolizar com os intervalos e cores que desejamos.
11.14 RAS MAPPER

Podemos visualizar alguns resultados e exportá-los com uso do RAS Mapper. Para utilizá-lo devemos definir o sistema de coordenadas e carregar o modelo digital de terreno. Para acessarmos o RAS MAPPER basta clicar no ícone abaixo.

Figura 194 Acessando o RAS-MAPPER.

Em seguida devemos definir o sistema de coordenadas, o mesmo que foi definido no trabalho com o ArcMap.

Figura 195 Definindo o sistema de coordenadas.
No menu do RAS MAPPER acessamos Tools e em seguida set projection for Project, conforme a seguir.

![Spatial Reference Projection File](image)

Figura 196 Definindo o sistema de coordenadas.

Buscar o arquivo .prj que contém as informações de referência de coordenadas (arquivo vetorial utilizado para a criação da TIN por exemplo).

Será solicitada um arquivo .prj, que é o arquivo que contém as informações de referência geográfica, utilizaremos o arquivo .prj gerado junto às curvas de nível.

![Spatial Reference Projection File](image)

Figura 197 Definindo o sistema de coordenadas.
Após selecionarmos o arquivo, será mostrado na janela a referência considerada, no caso WGS 84 UTM ZONE 18 N, conforme a seguir.

![Definindo o sistema de coordenadas.](image1)

Figura 198 Definindo o sistema de coordenadas.

Após a definição do sistema de referência geográfica, podemos carregar o modelo digital de terreno, basta acessar novamente o menu Tools, e sem seguida New Terrain.

![Inserindo o MDT.](image2)

Figura 199 Inserindo o MDT.
Na janela New Terrain Layer inserimos o MDT e aguardamos o carregamento.

Clicar no ícone + para carregar um MDT.

Figura 200 Inserindo o MDT.

O processo de carregamento tem várias etapas e pode demorar alguns minutos.

Após selecionar o MDT clicar em Create.

Figura 201 Inserindo o MDT.
Com a finalização do carregamento será mostrado na janela a mensagem Terrain Complete.

![Figura 202 Inserindo o MDT.](image)

Aguardar a finalização do processo de carregamento e clicar em close.

![Figura 203 Inserindo o MDT.](image)

Agora basta ativar a camada do terreno selecionando a caixa localizada ao lado de Terrain no grupo Terrain.

![Ativar a camada Terrain.](image)
O RAS MAPPER também nos permite o carregamento de imagens de satélite online, para isso basta acessarmos novamente o menu Tools, e em seguida Web Imagery, conforme abaixo:

![Imagem de referência](image1)

Figura 204 Inserindo uma imagem de referência.

O software disponibiliza diversas opções de imagens, vamos selecionar a opção Google Satelite.

![Imagem de referência](image2)

Figura 205 Inserindo uma imagem de referência.
Após o carregamento a imagem aparecerá na janela do Ras Mapper. Para retirá-la basta desmarcar a caixa em Map Layer camada Google Satelite.

Figura 206 Ativando a camada da imagem.
11.15 Visualização e exportação dos resultados

No canto esquerdo, basta selecionar a caixa Depht referente a mancha de inundação para que seja possível visualizá-la sobre o MDT. Podemos visualizar e exportar a mancha de inundação pelo próprio RAS MAPPER. Quando finalizamos uma simulação os resultados serão mostrados na caixa de camadas, no subgroup Results, conforme abaixo:

![Figura 207 Exportando a mancha de inundação.](image)

Para visualizarmos a mancha de inundação basta selecionarmos a caixa localizada ao lado esquerdo de Depth. Ao ativarmos a mancha podemos visualizar todos os perfis gerados.
O software também fornece a opção de visualizar uma animação da propagação da onda de cheia ao longo da área de estudo, basta utilizar os comandos de Play e Pause, na região delimitada abaixo:

Figura 208 Animação no RAS-MAPPER.

Figura 209 Animação no RAS-MAPPER.
Figura 210 Animação no RAS-MAPPER.

Figura 211 Animação no RAS-MAPPER.
Figura 212: Animação no RAS-MAPPER.

Figura 213: Animação no RAS-MAPPER.
11.16 EXPORTANDO A MANCHA PELO RAS MAPPER

Também é possível exportar a mancha de inundação pelo RAS MAPPER.

Clicar com o botão direito do mouse sobre a camada Depth, e posteriormente em Edit Map Parameters.

Selecionar a opção Depth na caixa Map Type.

Figura 214 Exportando a mancha pelo RAS-MAPPER.

Figura 215 Exportando a mancha pelo RAS-MAPPER.
Escolhendo o perfil.

Em Stored (saved to disk) selecionamos a opção Raster based on Terrain, e posteriormente clicamos em Save Map..

Definindo a opção de exportação.

Após clicarmos em Saved Map será aberta a janela Manage Results Maps.
Figura 218 Exportando a mancha.

Selecionamos a opção Depth (Max) e clicamos em Compute/Update Stored Maps

Figura 219 Carregando.

Aguardar o processo de exportação
Figura 220 Mensagem final de exportação.

Com a finalização da exportação a mensagem Stored Map Depth(Max) created aparecerá na caixa de mensagens.

Figura 221 Localizando o arquivo.

Para acessar o arquivo da mancha basta clicar com o botão direito do mouse sobre Depth / Open Folder in Windows Explorer.
Seremos levados à pasta que contem o arquivo .tif da mancha

Figura 222 Localizando o arquivo.
12 INSTABILIDADES NO MODELO

Em simulações para o regime de escoamento não permanente são comuns os problemas com instabilidade no modelo. A seguir os principais fatores que interferem na estabilidade:

- Espaçamento das seções transversais;
- Tempo computacional;
- Valores de coeficientes de manning;
- Vazões pequenas como condição inicial;
- Variações abruptas no talvegue;
- Tempo computacional.

O espaçamento das seções transversais pode interferir diretamente na estabilidade do modelo hidrodinâmico, sejam elas muito espaçadas ou muito próximas. O manual do HEC-RAS orienta que o espaçamento mínimo entre seções transversais deve estar entre 15 m e 30 m, aproximadamente.

Outro fator a ser considerado na obtenção de uma modelagem estável é o tempo computacional, em geral o ideal é ser considerada a condição de Courant, sendo utilizado na prática a expressão abaixo:

$$\Delta t = \frac{Tr}{20}$$

Sendo, Tr o tempo de pico do hidrograma de ruptura.

O valor encontrado pode ser utilizado como uma referência de tempo de cálculo, sendo o ideal trabalhar com tempos pequenos e que melhor se adequem ao seu modelo.

Coeficientes de Manning muito baixos também podem gerar instabilidades, pois geram altas velocidades, e possivelmente escoamento supercrítico. Dessa maneira os coeficientes devem ser adotados tendo como referência a literatura e de preferência utilizando níveis e vazões de referência para uma calibração.

Variações abruptas no talvegue também podem gerar instabilidades no modelo, pois podem fazer com que o fluxo ultrapasse a profundidade crítica. O ideal é utilizar um
número maior de seções transversais nessas regiões para aumentar o detalhamento geométrico, bem como trabalhar com a opção mixed flow regime.

Durante as simulações é comum encontrarmos algumas dificuldades com instabilidade, existem documentos e páginas na internet que nos auxiliam na resolução dos problemas:

- The RAS Solution – The Place For HEC-RAS Modelers:
 http://hecrasmodel.blogspot.com/

- Página HEC-RAS Brasil no Facebook;

13 REFERÊNCIAS

Melgarejo, Emílio Molero (2013) Manual Básico de HEC-GeoRAS 10 (3ª edição) – Curso de Especialização, Modelación de ríos com HEC-RAS y SI: Régimen permanente 1-D,

